VIBS 2018 – Pacific Yacht Systems Presentation

Understand your Electrical,
Manage your Power & Stay at
Anchor Longer

By Jeff Cote

Pacific Yacht Systems Inc.

design * installation * service * support

A Little about PYS

- 11 years in business
- Genesis: wanted a reliable and safe electrical system
- What makes us different
 - Expertise through specialization & repetition
 - 2017: Over 750 boats
 - Teamwork breeds synergy
- Team members
 - Detailed oriented
 - Passion for doing it right the 1st time
 - Our installations are safe and follow:
 ABYC and NMEA standards

Agenda

- Background & Context
- Requirements of an electrical system
- Calculating your daily power needs
- Sizing your battery bank
- Recharging your batteries
 - Battery Chargers (aka converters)
 - Alternators
 - External Regulators
 - Smart Battery Combiner
 - Methanol Fuel Cell
 - Solar Panels

PYS Requirements of an Electrical System

- Prerequisites:
 - Safety
 - Reliability
- Objectives:
 - Run essential loads (engine, lights, water pump, etc.)
 - Provide comforts (refrigeration, AC loads, heat, music, etc.)
 - Stay longer at anchor or longer between engine/generator runtime

Calculate Your Power Needs

- What is your daily power need?
 - Varies depending on the season, examples:
 - Lights are run earlier in winter
 - Heating in the shoulder and winter season
- Largest DC loads
 - Refrigeration is the largest draw: 50 125 Amp-Hour per day
 - Inverter powering AC loads
 - DC loads from running diesel heater (especially hydronic)

Typical Daily Battery Usage

Sizing Your Useable Battery Capacity

- Criteria to choose your battery bank
 - Daily Amp-Hour (AHr) budget
 - Estimated time between charging? How often do you charge your batteries?
 - Every ½ day
 - Every 2 days
- At a minimum, <u>usable</u> battery capacity needs to be
 - Daily AHr budget X Estimated time between charging
 - Example: 200 AHrs X 2 days = 400 AHrs of usable battery capacity

Lead Acid Battery Limitations

 To balance battery cost and life, you should never deplete your lead acid batteries below the following capacity:

Flooded: 50%

– AGM/GEL: 30%

Firefly AGM 20%

 Due to lead acid battery chemistry, charging above 85% of capacity (absorption stage) is very time-consuming

Therefore: while cruising effective battery capacity is:

– Flooded: 35%

AGM/GEL: 55%

Firefly AGM 65%

Sidenotes: AGM vs Flooded Batteries

	AGM	Firefly AGM	Flooded
Cost	\$\$	\$\$\$\$	\$
Gassing	Limited	Limited	Yes
Useable capacity	55%	65%	35%
Maintenance	None	None	Regular top-off
Self-discharge	2% per month	2% per month	15% per month
Purpose	Dual	Dual	Single
Sulfation	Yes	No	Yes

Sizing your Battery Bank

 Depending on your choice of lead acid battery, you will require the following:

Туре	Useable battery capacity
Flooded	3 Times
AGM/Gel	2 Times
Firefly AGM	1.5 Times

 Examples, if you need 200 AHr of useable battery capacity, you will require:

Flooded: 600 AHr

- AGM/GEL: 400 AHr

Firefly AGM: 300 AHr

Sidenotes: Battery Tips & Tricks #1

- Wire your batteries so they discharge evenly
 - Positive and negative at opposite ends

Sidenotes: Battery Tips & Tricks #2

- Liquid in the bottom of your battery box is probably electrolyte,
 NOT water
 - Make sure battery box is leak proof
 - Why did it boil over?
 - Neutralize with baking soda

Sidenotes: Battery Tips & Tricks #3

- Never expose your flooded battery plates to air
 - Once exposed, battery capacity lost

Sidenotes: On Battery Sizes and Types

- Batteries come in all sizes
 - Group 24, Group 27, Group 31
 - 4D, 8D
 - Golf Carts
 - Slimline
 - L16
- All battery sizes come in different lead acid types:
 - Flooded , AGM, Firefly AGM, Gel
- Flooded batteries are built specifically for a purpose
 - Starter
 - Deep cycle
 - Dual purpose

Electrical Cornerstone: Battery Monitor

- Monitoring for system health
 - Available capacity
 - Usage patterns, planning
- "Fuel gauge" & "speedometer" functionality for your batteries
- Information on your system
 - Current draw/charge
 - Amp hours
 - Voltage

What is the Right Charge Rate?

- Importance of sizing <u>minimum</u> charge rate to battery size
 - Minimum: ~ 10% of capacity
- Reduce your charging time by increasing your charge rate
 - Maximum: ~ 25% of capacity (AGM/Gel: ~ 40%)
 - How often to you want to run genset/engine per day?

Different Charge Methods

- Ways to create power
 - -Charger(s)
 - —Alternator(s)
 - -Methanol Fuel Cell
 - -Solar
 - -DC Genset
 - -Wind Turbine

Smart Battery Charger

- Charges batteries from AC shore-power
- Reduce the charge time
- Three-phase smart charge cycle:
 - Bulk, Absorption, Float
- Right rate of charge for extended battery life
 - Minimize sulfation

Smart Charger Application - Multiple Units

- Reduce genset runtime by adding 2nd or 3rd charger in parallel
 - E.g. 1 hour morning and evening
- Charge at the right rate
- Min and Max Charge Rate
 - Flooded: 10% to 25%
 - AGM: 10% to 40%

Sidenotes: Old vs New Chargers

Ferroresonant vs Smart Charger

	Ferroresonant	Smart Charger
Rate of charge	Half rated output	Full rated output
Charge curve	Simple	3 stage
Overcharging	Yes - Trickle	No - Float
Battery type settings	Flooded	Flooded, AGM, Gel
Temperature - compensated	No	Yes
Looks	Ugly	Pretty
Weight	Heavy	Light

Alternator(s)

- Converting engine power to DC power
 - Note: AC power has nothing to do with alternator output
- Why maximize alternator output
 - No or reduced genset runtime
 - Typical little engine runtime (sailboat or fast power boat)
- Variables for choosing a larger alternator output
 - V-Belt or Serpentine belt
 - Engine recommendations
 - Physical constraints

Alternator Realities

- Stock Alternator: 55 Amps with internal regulator
- 55 amps is cold rated,
 - after ½ hour of running: de-rate by ~ 15%
- Internal regulator limits output to about 2/3rd of output
- Realistic Output: 30 to 35 Amps
- Consider loads (5A to 30A) while engine is running
- Effective Charge Rate = (Alternator output) minus (loads while running)

External Regulator

- Makes alternator output smart
 - 3 phase charging
- Significantly increases alternator output
 - When compared to internal regulator
- Properly chargers different battery chemistries

Methanol Fuel Cell

l Cell

- DC Charging with:
 - No noise
 - No vibration
 - No smoke
- Extends time at anchor
- Great for boats
 - Without genset
 - Limited battery bank
 - Limited alternator output

Methanol Fuel Cell - Purchasing Tips

- Choose the right daily output:
 - 85, 140, 210 amp-hours
- Carry extra fuel onboard
- Popular model
 - EFOY

Methanol Fuel Cell - Installation Tips

- Unit needs some ventilation
- Outputs distilled water
- Mount in a locker
- Fuel cartridge needs to be close to unit
- Choose right DC cable based on distance to battery

Imagine...

- Staying an extra day or two at anchor without more battery
- Offsetting the loads associated with the fridge
- Recharging the batteries without any noise, vibration, smoke
- For sailors: not worrying about motoring between anchorages to recharge batteries
- Running a genset less or NOT at all

Solar Innovations

 Flexible panels: similar wattage per area to rigid panels

Northwest Advantages

- During peak summer months: 15 + hours of sunlight a day
- Relatively sunny days during summer months
- Most boaters have extensive canvas covers (e.g. bimini, dodger) or hardtops

Flexible Panels: Endless Mounting Options

- Lightweight
- Mounted on:
 - cabin roof (no ventilation space needed)
 - canvas (bimini, dodger, cockpit enclosure)
- Zippers, grommets,
 Velcro, snaps, adhesive

Wide Selection of Panel Size

Choice: Mono or Poly?

- Monocrystalline cells
 - Highest efficiency
- Polycrystalline cells
 - Best value

Solar Power Efficiency Defined

What do the different efficiencies mean?

- The efficiency of the panel is included in the wattage rating
 - a poly 100W panel will be larger than a mono 100W panel,
 but
 - both will produce the same energy
- The efficiency is a measure of how much of the sun's energy is captured by the panel
 - lower efficiencies mean a larger panel is required to capture the same energy

What Makes a Great Panel?

- Depends on construction:
 - Quality of encapsulation: EVA (Ethylene vinyl acetate)
 - Prevents yellowing <- similar effect to shading
 - Connections between cells: silver alloy
 - Redundant pathways between cells (32 times more connection)
 - Top ones are hand-made
 - High end cells
 - German made (Day4)
 - Sealed and waterproof junction box and MC-4
 - IP67
 - Visual and tactile inspection
 - Test individually (in-house) for 24 hr before shipping
 - Xenon Sun Lamp

Expected Life

- Expected life: 20 years
 - –Plastic life proven
- Warranties: 5 years

Panels Shade-Protected?

- Make sure solar panels include a bypass diode to prevent a shaded cell from de-powering the entire panel
- These diodes effectively split the panel into two independent power sources
- Without diodes in evening and night reverse current

Solar – How Many Watts?

- Solar panels can be sized to power
 - —daily Ah demand
 - -refrigeration Ah demand
 - –effectively, extend your time at anchorage: e.g. 3 days instead of 2 days

Sample - Quick Calculation

- Rule of thumb: 25% of wattage = daily Ah output
 - Watts X 25% or Watts / 4
 - E.g. A 100 Watt panel will produce 25 Ah
 - 100 X 20% = 25 Ah

- Optimistic: factor of 3 or 33 Ah
- Conservative: factor of 5 or 20 Ah

Making it Work vs. Doing it Right

The PYS Difference


- We are boaters too!
- It's all we do.
- Many electrical "fixes" are indicators of the bigger picture.
- We can help you prioritize safety.
- Our business is based on referrals.

Connect with PYS

- Starting Point: PYS Electrical Audit for your boat
 - 90 minutes: Batteries, DC distribution, charger, alternator, inverter
 - Written report: observations & recommendations
 - Cost: \$189
- PYS Design Services for DIYers
 - Electrical system designed by PYS (collaborative and to code)
 - Installed by yourself or other outfit
- Pacific Yachting magazine Monthly Tech Talk Column
- www.pysystems.ca 100s of articles
- Monthly email newsletter

